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ABSTRACT
The numerical stability of conventional implicit algorithms of the
approximate factorization type as applied to two-dimensional and three-
dimensional hyperbolic systems is analyzed. The unconditional instability of
three~dimensional wave equation and Euler’s equations of
gas dynamics 1is proven and a modified scheme 1s proposed which |is
unconditionally stable for the scalar wave equation. Analytical results are

verified by numerical experimentation.
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1. INTRODUCTION

In recent years there has been an increased interest in numerical
solution of the time-dependent Euler equations in two and three spatial
dimensions. Because of stability restrictions associated with explicit
finite-difference methods, renewed attention has been paid to implicit
methods. These methods, in their primitive form, require a prohibitive amount
of computational effort per time-step. This difficulty is circumvented by
resorting to approximate factorizations such as the Beam-Warming scheme [2].
Beam and Warming employed what is known as the delta-form. This is done in
order to avoid, as one marches to steady-state, the time-step dependent
splitting errors. Their approach produces a scheme which is analogous in
structure to the one proposed by Douglas and Gunn for the parabolic case
[31. In the two-dimensional case, their scheme has been proven to be
efficient and second-order accurate in space and (linearly) stable.
Unfortunately, this scheme is unstable in three-dimensions for the (scalar)
linear wave equation, as shown by Dwoyer and Thames [4] and Warming and Beam

[5]. This is also true for the full three-dimensional system of the Euler

The present effort was directed towards developing an implicit scheme for
hyperbolic equations which will be stable in three dimensions and yet be free
of splitting-errors. A natural starting point was the LODQ method presented
in [4] for removal of the splitting-error inherent in locally one-dimensional
algorithms (LOD) thereby presenting and alternative to the delta-form of Ref.
2. However, as shown in [4], the LODQ when applied to the three-dimensional
wave equation was also unstable, just like the Beam and Warming scheme. This
result is not surprising since, as was shown in [4], the two alternatives

discussed above (Beam-Warming and LODQ) have the same amplification matrix.



In Section 2, we show how the unstable three—-dimensional LODQ can be
stabilized without changing or adding to the implicit part of the algorithm.
We also show how the delta-form Beam-Warming algorithm can be suitably
modified. In Section 3 we discuss programming aspects of the new algorithm
while in Section 4 numerical evidence is presented, for the three-dimensional
linear wave equation case, that the method is stable and retains its second-
order accuracy. While the present synthesis of the scheme is immediately
applicable to a nonlinear hyperbolic system its analysis and confirming
computations were carried out for the linear scalar case. Work is presently
being carried out leading to application to the full Euler system of fluid

dynamics. The results will be presented in a subsequent report.

2. THE ALGORITHM AND ITS STABILITY

Consider first the two-dimensional hyperbolic set

pui. Y -— -—
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where U, F(U) and G(U) are m—-component vectors; A and B are,

- —_
respectively, the Jacobians 9F/3U and 9G/3U, assumed to be simultaneously
symmetrizable. This assumption is valid, e.g., for Euler’s equations. The
standard, approximate-factored, form of the Backward Euler algorithm applied
to (2.1) takes the form
ntl _ n

(1 - acas u )(1 - AtBGyuy)U.

=" 2.2
ik j,k’ (2.2)
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where Uj s U(jox,kAy,nAt) is the solution vector described over a
bl




rectangular mesh, and Gx and M, are respectively a differencing and

averaging operators given by § /Ax,

n _ (.n _yh
O3k = Uty V-1 1)

TR i /2. Analogous definitions hold for
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x 3,k ( +15 ,k i-1n ,k)
§ and 1u .

y y
That (2.2) will, at steady—state, yield a result which is At-dependent

1s easily seen by writing it as

Un+1 - "
iLk ik _ n+l _ n+l
x: (Aaxux + Bayuy)u1’k AtABS 1 6w UL . (2.3)

The last term on the right-hand side is the splitting error, and it becomes
unacceptable as larger At’s are utilized in the time-advance. In three
dimensions the splitting error is proportional to At2.

In order to remove the splitting error, one may use any of several
strategies - we will briefly review two of them. In the delta-form, [2], one
uses instead of (2.2)

ntl . n — n .
(I—aAtAGxux)(I-aAtB6yuy)(U Ul ) = ae(As u + Bsyuy)u , (2.4)

3,k 1,k

where a 1s a free parameter (usually b@( a< 1),

If we achieve convergence, then indeed the right-hand side of (2.4)
solves (to second-order 1in the spatial coordinates) the steady-state
operator. Another approach (LODQ) was presented in Ref. [4]. The "given"
data at any time level 18 designated Qg,k' One then first advanced

temporally by using the standard Backward Euler

n+tl _n

1.k~ Y (2.32)

(l-aAtAGXux)(l-aAtBﬁyuy)U



and follows it by an explicit step

n+1 n n+l
, = Q, + At(AS v + BS u U, . 2.5b
QJ,k QJ,k ( XX y YJ i»k ( )
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Clearly, if steady state 1is achieved then U2+i and not Qg K is the
b ’

(second-order accurate) solution to the steady-state operator.

In the scalar case (2.4) and (2.5) are equivalent, as an examination of
their respective amplification factors will show. For this case it is also
easy to establish stability, see [4].

In the three-dimensional case, the situation is different. Both the
delta-form of the Backward Euler scheme and the LODQ form are unconditionally
unstable for a general scalar case and also, more importantly, in the case of
the system of Euler’s equations. This will now be demonstrated. The three-

dimensional Euler equations for gas—dynamics may be written as follows:

. -— = -
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where V is the column vector (p,u,v,w,p) and the coefficient matrices for

an ideal gas are given by:

u p 0 0 0 v 0 p 0 O w 0 0 p O
0 u 0 0 1/p 0O v 0 0 O 0 w 0 0 O
A=10 0 u 0 0}, B=JO0 0 v 01l/p]l, C=}0 0 w O O |J. (2.7)
0 0 0 u O 0O 0 0 v O 0 0 0 wl/p
Oyp O O u O Oy O v 0 0 Oy w
The wvarious parameters and dependent variables p,u,v,w,p and Y are,

respectively the density, the x, y, and =z components of velocity, the

pressure and the ratio of specific heats at constant pressure and volume.




The matrix coefficients, A, B, and C are simultaneously symmetrizable

via a similarity transformation [1]. It is given by:

B o 0 0 o] /80 0 0 0 -1/8pc? ]
0 ¢ 0 0 =-c 0 1/2¢ O 0 1/2pc?
s={0 0 vic 0 o, s'={o o 1M/Z o0 0 . (2.8)
0 0 0 V2¢ 0 0 0 0 1N2¢ O
[ 0 pc? 0 0 pc? 0 -1/2¢ 0 0  1/2c?

1 -
where ¢ (yp/p) f2 is the speed of sound and 8 = Y2(y-1). The form of the
symmetrized coefficients 1s important for demonstrating the numerical

instability of the scheme, and so they are presented explicitly herewith:

fa 0 0 0 0 v 0o o o o0 |
utc 0 O 0 v c/N2 o 0
A = s™las = u O » B= sTlas =l 0 eWZ v 0 c/V2
0 u 0 0 0 v 0
(0 0 0 0 u-c] 0 0 cHNZ o v |
(w 0o o o o0
0 0 c/V2 O
c, = s™les =| 0 0 w 0 0 . (2.9)
0 c/V2 o w c/V2
L0 0 0 c/V2 w

For the purpose of (linear) stability analysis, one may consider the
matrix coefficients as locally constant and then (2.6) takes the form
Py - - -
U U U 3U

—— — —+ — = L]
e T At By T e T O (2.10)
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g o
with U =§ V. The delta-form of the approximate-factorization Backward

Euler scheme corresponding to (2.4) is then
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(1 + aAtAsaxux)(I + aAtBS6yuy)[I + aAtCSGZuz]( i,k,1 j,k,l)

= -AM(ASu +BSu +C8u U . (2.11)
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Symbolically, we may rewrite (2.11) as (omitting subscripts on the U’s):

- RO, (2.12)

with obvious definitions of the matrix operators L and R. Clearly, the

amplification matrix for the algorithm represented by (2.11) is

Gy =1+1L1r, (2.13)

~

where L and R are obtained by evaluating the elements of L and R in

Fourier space. The LODQ algorithmic discretization of (2.10) corresponding to

(2.12) is
 RTRALIY L (2.14a)
ot -t 4+ R0, (2.14b)
leading to an amplification matrix of the form
Go=T1+RLD . (2.15)

Note that only in the scalar case (or in the unlikely event that 11
and R commute) is GA = GQ' Nonetheless, we shall now show that for the

system of the gas-dynamic equations both the three-dimensional Beam-Warming

algorithm (2.13), and the LODQ one (2.14), are unstable. We start by noting




that A, B, and C
s’ s s

have the property that all the elements in their top row

and left columns are zero except the element in the upper left corner; i.e.,

(w0 0 0 0] "vlo 0. 0 0" wlo 0 0 0]
0! 0| o !
A = o A ,B =| 0] B ,Cc =|o0 ' C . (2.16)
S s S S S
o ! 0! 0!
LO | i L0| ] LOI |

Therefore each of the three factors of

in particular

L will have the same structure and,

-
(14210 31 utv/1-g2 (1+21a n?)(14210 p= wr/1-z2)) 0 0 0 O
0 |
L= 0 |
0 | L
0
_ | J
(2.17)
where £ = sin(wI/Z), n = sin(wZ/Z), L = sin(w3/2) and o, W55 are the

dual Fourler variables ranging from zero to 27

and hence =~1 < &,n,; < 1.

Clearly, ﬁ will also have the same type structure - specifically

.Ei_ﬁilEPE{EfE?_._A vn/z—;_ +
0
R = 0
0
L 0

!
| (2.18)

- RN




A -~ AA 1

It follows that L IR and RL™ will also have this type of structure

although their 1lower right blocks will differ, (ﬁﬁ—l) # (ﬁ_lﬁ). Thus,
finally, we conclude that while G, # GQ they do share the indicated matrix

structure with G =G

All Q11° In particular

I
I
% ~ . (2.19)
I

where

21 (At/8x) [uE/1-E2 + (ax/Ay)vn/1-n? + (Ax/pz)we/l-E2] .
[1421a(At/ax)uE/1-£2 | [ 1421 a(At/ Ay )vn/1-nd [ 1421 a( At/ Az yweY 1~ L 2]

~

The corresponding lower right block of GQ will be 1 + (ﬁL_l).

=1+

g11

We are now ready to establish the unconditional instability of GA (and,

hence, also of GQ). GA may be written as

s (2.20)

0o

L -

where the definitions of 811 and g are clear from (2.19). The instability

of scheme will be established if we show that "GA" > 1, with the square of

the norm given by

2 _ (T
I, 1% = o(G,G,), (2.21)

o(*) being the spectral radius of the designated matrix. In our case




- | S 1 M, | 7
5Lﬁ"iftf ﬁm} 0 {f EWO 0 0 O
0 T o " T~
GiG, = | -lo | =10 | ,
‘ g | . | T
g 0 g 0 g'sg
0 | 1 Lo | 1 Lo ! |
and thus

T 2 ~T~
0(G,G,) = max(gll; g gh). (2.22)

If we can demonstrate that for any O < At there is a triplet &, n, ¢ such
that 811 > 1 then instability has been established. In other words, we have
just shown that if a scalar version of (2.10) and (2.11) is unstable then also
the delta-form of the Backward Euler scheme is unstable for the equations of
gas—dynamics (Euler’s equations). The same argument, of course, holds true
also for the LODQ algorithm. The scalar version of (2.10) which gives rise to
an amplification factor g = g;; 1is

Hruday %g +w L= o, (2.23)
where now U 1is the unknown scalar and u,v,w are scalar coefficients, which
for the purpose of (linear) stability analysis may be taken as (locally)
constant. We can now "stretch" the coordinates x,y,z through division
respectively by u, (Ax/Ay)v, and (Ax/Az)w so that the corresponding

amplification factor has the form (with A = At/Ax)

) 2 2 2
g =g, -1+ 21A(§/ﬁ £“ 4+ n/ﬁ nc o+ ;/ﬁ z”) ’ (2.24)

(1+2iaxg/1-52)(1+21axn/1-n2)(1+2iax;/1—c2)

define
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a = (8182 + w1-n? + ¢/1-2%)
b = 46222 (en/1-62 V1-n + ne/1-n® Yi1-c* + ce/1-2% 1-2?)
e = 8303 eng/1-£2 V1-n? V1-¢2

and thus rewrite (2.24) as:

ia _ (1-b) - i(e=(o+l)a)
l + ica - b - ie (1-b) - i(e-ca)

(2.25)

and

12 = (1-b)2 + e2 - 2(1+a)ea + (1+a)2a?

. (2.26)
(1-b)2 + e2 - 2cae + o2a?

e
For instability we require to show |g|2 > 1, or

-2(1+a)ea + (1+20+02)a? > -2aea + o2a2,
or

a[-2e + (1+2a)a] > 0. (2.27)

This inequality is satisfied by an infinite number of triplets (&,n,Z). For
example, take 0 < £ < 1(0<w1<2ﬂ), n = -C(wz = —w3), then a = 2(A&/1-EZ) > 0
and e = —8a3k3€n27q:27k1-n2) < 0; the inequality is then satisfied for all
"LQ < a, (In real computation, of course, a > 0.) This completes the proof
that GA’ the amplification matrix for the delta-form of the three-dimensional
approximate~factored Backward Euler scheme for the gas-dynamic equations has a
norm exceeding unity and hence is unstable. As shown above, the argument

holds also for GQ.




The question now is can one modify the algorithms (2.12) and (2.14) in
such a way that, at least, 811 <17 Success will not necessarily establish
stability for the complete set of the equations of gas—-dynamics (Euler
equations) but at least if the scalar case is shown to be stabilized there is
hope that this will hold true also for Euler’s equations. We will carry out
the manipulations in the Fourier space and when g = g11 1is stabilized we
will inquire as to how these changes map into the physical space in which the
algorithms (2.12) and (2.14) are written. Examination of (2.24) convinced us
to change g 1in such a way that the modified amplification factor, g will

have the form

g = 1 - k(Emtach) + 21 A\(8/T=82 + w1-n% + o/1-22)(E2+n2+z2) .
m

(1421 xat/T-EZ+R£2) (1421 Aan/T-nZ+8n? ) (1421 Aag/1-¢ 248 2)

(2.28)

Numerical tests were conducted for a =Y and 1 and for lp< B <5 with
-1 < E,n,z € 1 taken over this range by steps of Af = An = Az = 0.05; and
various values of X ranging from 1 to 104. Uniform stability (gm <1 for
all &,n,z and A) was found for « ranging between 0.05 and 0.5. We do not
have analytical proofs for these bounds but the results of the numerical
experimentation leave little doubt as to their validity. (Note that for
A >> 1 and upper bound on k is 2/3.)

Next we’ll consider what changes to introduce into the nonlinear
nonsymmetrized version of (2.14) in order that the first variation of the new
algorithm will have (in the scalar case) the amplification factor 8n given

by (2.28).

11
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Taking note of the fact that £2 and & in Fourier space correspond,
respectively, to —Ax26§/4 and Ax“G;/16 and similarly for nZ,n*, 2, ct,

we modify (2.14) as follows:

Tt _gn

L = (2.29a)
m
=n+1 Ax" Ayt Azt an | _an+l
R f?f— (8% + () 5; +(5) Jer] QR (2.29b)
where
Ly = (I + abtAs u - B(ax?/4)82)(1 + abtBS U - B(Ay2/4)6y2)
(T + anecs,u, - B(822/4)82), (2.30)
and
=n+1 Ax? Ay, 2 Az 2 57 S+l
v o= - —%— [ai + (K%) c§ + (Zg) 2] T (2.31)

Notice that at steady state the solution vector is the newly defined quantity
-— -
V and not U, unlike the case in the unmodified (and unstable) formulation.

The amplification matrix of (2.29) is
Gom = [1 = k(E**+g")]1 + RLZ1(£24n2422), (2.32)

and for the scalar case this reduces to g, given by (2.28) which numerical
experiments have shown to be stable.
In order to stabilize the three-dimensional '"delta"-form, equation (2.12)

is modified as follows:




an+l -n khx"
m - 16

Avat Az 4 KN
L 6% + () 8 + () 4] U" + vV, (2.33)

to give the amplification matrix

Gpp = L1 = (E*+n*+c)]T + LoIR(£24n24¢2). (2.34)

-l
At steady state (if one is achieved) the vector V solves

R RS C AN IR (2.35)
-

rather than RV = 0. The question arises as to the error introduced into the
solution (2.35) by its right-hand side. For the solution of (2.35) to be
second-order accurate it 1s necessary for the right-hand side to be of

0(2x2). For E? sufficiently smooth (e.g., VWE = 0(1)) the error is
determined, for large At, by the term of L of highest power in At,
multiplied by the coefficient in front of it. Similarly one could get an
estimate for small At. This argument then predicts that (2.35) will yield

steady-state solutions which are second-order accurate spatially for the

following range of A:

K 4N1/2
Tew < * < 172,372 (2.36)

where N 1is 1/4x. For nonuniform grid this estimate will change somewhat,
but not materially. This estimate yields a wide range of available A for
second-order accuracy. Numerical evidence in Section 4 supports the estimate

(2.36) and indicates that these limits exceed the practical range.



14

3. PROGRAMMING CONSIDERATIONS

Before embarking on a discussion of numerical results obtained with the
scheme proposed 1n Section 2, we will first discuss some aspects of
implementing the scheme. In the numerical results to be presented in Section
4, the algorithm defined in Eqs. (2.29) - (2.31) was used, but in a slightly
modified form. The first modification concerned the quantity '7 defined by

Y
Eq. (2.31). 1In the computer program V was defined as

v, (3.1)

a modification which allowed us to examine the effect of the discrete
Laplacian operating on ﬁ both on the accuracy and stability of the scheme.
Again, if steady state 18 achieved, it 1is the quantity 7“ defined as above
which satisfies the steady difference equations in the sense of Eq. (2.35).
The numerical tests described in connection with Eq. (2.28) were extended to
include 0 € u < 1. All stable runs remained stable except for u =1 which
destabilized the scheme.

An additional difficulty that had to be overcome in the implementation of
the stabilized LODQ algorithm was the reintroduction of the Yanenko boundary
condition errors [4], [6] through the terms proportional to « in Eq.

(2.29b). This difficulty can be circumvented by rewriting (2.29b) in the form

ot .o 5A§i Y Ay "oy Azy" oy 1, =n+l 2+
Q" = Q" - 5 (8 + (FD) M (32) &¢]L U™ + RV (3.2)

Use of the corrector step of the algorithm in this form, although formally
identical to (2.29b) on an infinite domain, prevents introduction of 0(1)
contributions to the residual on grid 1lines near computational domain

boundaries (see [4]).




The mnext point warranting discussion i1in this section concerns the
implementation of the algorithm near boundaries. On grid lines immediately
adjacent to boundaries one cannot. directly apply Eq. (3.2) as this would
require data from outside the domain (since the fourth difference operators as
defined herein require a five point stencil). On grid 1lines immediately
adjacent to domain boundaries, a second-order accurate six point uncentered
difference operator 1is used in lieu of the centered five point operator as
ﬁn+1

required. In additionm, Lm , which 1s evaluated explicitly as

(3.3)

is required at all points on the grid including boundary points in order to
operate on this quantity with the discrete biharmonic. We consider a
computational domain discretized uniformly in Cartesian space with J*K-°L
grid points such that
1< 3<J
1 <k<K (3.4)
1<2<L .
The evaluation of (3.3) is accomplished in the calculations presented herein

as follows:

(1) Evaluate Léﬁn+1 over the range 1< j< J, 1< k< K and
=n+]
2 < 4 < L-1 wusing central differences. Evaluate L3U for 1< <7,

1<k<K and £ =1, L using second-order accurate forward or backward

differences as required.

(11) Evaluate LZ(L36“+1) for 1<§<J, 2<k<K-1 and 1< &< L.

(111) Evaluate LI[LZ(L3ﬁ“+1)] for 2< §<J-1, 2< k< K-1, 1 < & < L.

15
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(iv) Use second-order accurate extrapolation to evaluate Laﬁn+1 from

interior values for j=1,J, k=1,K, 2=1,L.

Note that the added complexity of calculating Lmﬁn+1 1s required only by the
new algorithm in the LODQ form which was the case considered here. For the
new algorithm in the delta-form, an evaluation of Lmv*ﬁ is required but
details of the evaluation of this term were not studied.

The final point to be considered 1s the application of boundary
conditions. Since it 1is the vector '6 which satisfies the steady difference
equations over the domain, the appropriate boundary conditions for '? are the
boundary conditions derived from the steady continuum problem. For a first
order system of the type considered here modeled with central differences, two
types of boundary conditions can arise, here termed physical and numerical.
Physical boundary conditions arise from application of the continuum boundary
conditions to the discrete problem while numerical boundary conditions arise
from the need to close the system of difference equations on computational
domain boundaries not corresponding to physical boundaries. In the
calculations presented in Section 4 the physical boundary conditions were
always taken to be a specification of v' over some segment of the boundary of
the computational domain. The numerical boundary conditions were always taken
to be a second-order implicit extrapolation of v:

In addition to boundary conditions on 'V, the new algorithm requires
boundary data on ﬁ' in either LODQ or A forms. In the present work these
conditions on fJ‘ were taken from the conditions on ?I‘ Where physical
boundary conditions were applied the condition on ﬁ' was taken to be the same
as the condition on '?. Application of numerical boundary conditions was,

however, somewhat more complicated. Let us consider the plane j =J to be




an artificial computational domain boundary at which we apply

v - W - (3.5)

sky2 J-1,k, % J=2,k,8°
-
If we were to directly substitute into Eq. (3.5) the definition of V 1in
- _\n
terms of U, Eq. (3.1), a formula involving U would arise. Thus, a
J+1,k,%

boundary condition for UE K. % cannot be derived solely from the boundary
44 ’

condition on but instead, an additional numerical boundary condition

_&1
Vik,e°
on ﬁn must be specified. This result is not surprising since Eq. (2.29b)

written entirely in terms of 'V“ and 3“ spreads the stencil of ?“ to five

points in each direction, indicating the need for an additional numerical

boundary condition on ﬁh. This extra condition was here taken to be

[ =, -1

J+1,k, 2 6,2~ Va-1,k,0 (3.6)

Substitution of Eqs. (3.1) and (3.6) into Eq. (3.5), expanding the definitions

of the operators and collecting terms yields the following condition for

J,k, 2}

"

(1-)] J,k,2

(v +

)W

n
J-3,k%,2

13 =n >n 1 &
[2u + 2= (1‘“)]UJ-1,k,1 - [”+2(1'“)]UJ—2,1<,1 + 4 (1a)U

+ 10 + 70 + 0" Je

1 -n
+ = - 282
; (1-m)bx 6x(UJ-l,k+1,z 3-1,k=-1,2 T Ust,x,041 T Vo1 k01

3.7)

e

Equation (3.7) represents the boundary condition on Ug k.2 consistent with
» )

17
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both Eqs. (3.5) and (3.6). Implementation of this boundary condition in terms
of the algorithmic interpretation of Eq. (2.29a) would couple adjacent
tridiagonal inversions. This undesirable property can be eliminated by noting

that the quantity in brackets in the last term on the right hand side of (3.7)

0"

can be replaced by 4 J-1.k.% to O(Ayz,Azz). Thus, the final form of the
1 b

boundary condition used in the present work is

=n 1 -
+ (l—u)UJ—3’k’£.

n -U
1,k,2 J=2,k,% &
(3.8)

- 3 1-m 1g?

[u +% (1-1)]u

4. NUMERICAL RESULTS

4.1, Test Problem

The test problem examined in the present work involved the solution of
Eq. (2.23) on the cube 0 < x,y,z € 27 with u = v = w =1 and subject to
steady boundary data on three faces of the cube. These data and their

location were taken to be

x =0
U = cos(-y) + cos(y-z) + cos(-z)
0<y, z< 2n
U = cos(x) + cos(-z) + cos(x~-z)
0 x, z< 2n
z =0
U = cos(x~y) + cos(y) + cos(x)
0<x’y< 2n .

The exact steady solution to this problem is given by




u = cos(x~y) + cos(y-z) + cos(x~z).

Numerical solutions to the steady problem were obtained by solving Eq. (2.23)

in time until an asymptotic steady state was reached. The 1initial data was

taken to be

U = cos(x-y) + cos(y-z) + cos(x-z) + xyz(x~2m)(y-2r)(z-2%) ,

0< x,y,z < 2w,

The steady state was assumed to be reached when L, norm of the residual
(i.e., RV?) was reduced below a set tolerance. The accuracy of the resultant
solution was measured by calculating the maximum error and the L9 mnorm of

the error between the exact and discrete solutions.

4.2, Discussion of Results

In order to assess the accuracy of the three-dimensional algorithm given
by Eq. (2.29) - (2.31) a series of runs were made for the test problem for a
sequence of grids for «k = 0.1, a value sufficient to insure stability. These
results are summarized in Figure 1 where second-order accuracy is seen to be
obtained.

The effect of A on the convergence rate of the scheme is shown in
Figure 2. Note the strong dependence of the convergence rate on A and the
fact that the optimum X for convergence is X = 1. Similar results have
been reported elsewhere.

Finally, 1in Figure 3, the effect of A on the solution accuracy for

fixed « # 0 1is shown. The accuracy as defined in the last paragraph of

Section 4.1 is also compared with the accuracy of the x = 0 case. Note that
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although as a pure initial value solver the algorithm is unstable for «x = 0,
for the complete range of A, it appears that this case can be stabilized by
the boundary conditions. Numerical solutions obtained in the range A = 0(1)
with « = 0 are thus taken to be solutions of the steady difference operator,
RVE = 0. Note the fact that there is a minimum 1in error produced by the
scheme (2.29) - (2.31) which is lower than that produced by the scheme with
K = 0. This fact can be explained by noting that the temporally inconsistent
terms 1in the algorithm have coefficients AT, 1, A, A, Hence at small
values of A, the X-l terms will dominate the error while the Xz terms
will come to dominate at larger values of X. Thus, the error should have a
minimum value at some value of . It should also be noted that both the
analysis and computational evidence verify that the parameters u and B
have no effect on the steady solution.

A final point should be made about stability of the algorithm with
K=0, u=1 and B =0 (i.e., the basic algorithm). The computational
evidence obtained in the present investigation indicates that the instability
of this interior point scheme is quite mild. On finite grids it is possible
to obtain solutions for small X, although the maximum stable value of A
appears to decrease as the gird is refined. As an example, on a grid of
33x33x33 for the test problem an effective spectral radius of 1.002 (defined
as (AQn /aQ! )l/n) was found at A = 100. By contrast, the new algorithm

max’ 'max

was found to have a spectral radius below unity for 1< A < 10°. The basic
scheme is already extremely weakly unstable at X = 5, however, and in effect
will never converge or diverge, i.e., the effective spectral radius of the
scheme 1is unity. Since the instability of the interior point scheme is so
mild, the implicit damping introduced by the parameter B 1is very effective

in accelerating the convergence of the scheme when 1t 1s stable, but the




parameter K, which introduces a form of explicit damping that does not vanish

in the steady state, is most effective in extending the stable range of A.

5. SUMMARY AND DISCUSSION

The following main reuslts were obtained in this paper:

1. It has been shown that both the LODQ (2.14) and the Beam-Warming
(2.11) algorithms for the Euler equations of gas-dynamics in three-dimensions
are unconditionally (linearly) unstable.

2. A stable algorithm for three-dimension is proposed. It does not have
any more implicit operations than efther the LODGQ or Beam-Warming schemes.

3. This stable algorithm is second-order accurate for a wide range of
the Courant number.

4, It was observed that all three algorithms (LODQ, Beam-Warming and the
new one) have a convergence rate to steady state which is not monotonic with
A (unlike an unfactored implicit algorithm). We were surprised to find that
the optimal Courant number X for which convergence to steady state 1is
fastest 1is of order wunity for both two-dimensional and three-dimensional
cases.

The observation mentioned in the last point above ralses the issue of the
efficacy of implicit factored schemes verses explicit ones. Clearly for
problems with uniform mesh it would seem that the operation count and CPU time
favor explicit algorithms. It is not yet clear which way to go in the case of
highly stretched mesh, especially if time accuracy 1s not important.

All of the above evidence and analysis for the new algorithm were for the
linear scalar wave equation. Clearly much experimentation 1s necessary to
explore 1its application to the FEuler equations in three-dimensions with

uniform and non-uniform grids.
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Figure 2. Effect of Courant number on iterative convergence of stable

implicit scheme for three-dimensional wave equation.




RELATIVE ERROR

Figure 3.

25

8 - ——O0-———O0 == —-0—-————0
.6 —— O— — —0

]
Il E2te= 0.1 [|Y2))] E2ix= 0] 12

A

E oyl € = 0)= 0.0952652

|| £« =0)]| = 0.10517
2

3‘D; N=32;)\ =]

| | | ] J
0 1 3 4 5

A = At/ Ax

Effect of Courant number on spatial truncation error of stable

implicit scheme for three-dimensional wave equation.



